M1.D

M2.C

M3.(a) Suitable experiment eg diffraction through a door / out of a pipe
(b) Using c $=\mathrm{d} / \mathrm{t}$
$t=2500 / 480=5.2 \mathrm{~s} \quad \checkmark$
(c) (Measured time is difference between time taken by light and time taken by sound)

Calculation assumes that light takes no time to reach observer, ie speed is infinite

Do not allow "could not know speed of light"
(d) Sound from gun is a mixture of frequencies.

Alternative for $1^{\text {st }}$ mark '(so speed is independent of frequency) the sound of the gun is similar when close and far away'

All the sound reaches observer at the same time,
(e) More accurate, as it is closer to the accepted value.
(f) When $\theta=0{ }^{\circ} \mathrm{C} \quad \mathrm{c}=331.29 \mathrm{~m} \mathrm{~s}^{-1}$

Therefore
$331.29=\mathrm{k} \sqrt{ } 273.15$
$\mathrm{k}=20.045$
(g) The method and value are published
other scientists repeat the experiment using the same method

M4.C

M5.(a) number of (complete) waves (passing a point) in 1 second OR
number of waves / time (for the waves to pass a point) OR
(complete number of) oscillations $\backslash$ vibrations per second OR
1 / T with T defined as time for 1 (complete) oscillation
Allow: cycles
Allow: unit time
(b) For two marks:
oscillation of particles $\backslash$ medium $\backslash$ material etc, but not oscillation of wave is parallel to $\backslash$ in same direction as the direction wave (travels) $\checkmark \checkmark$

For one mark:
particles $\backslash$ material $\backslash$ medium move(s) \disturbance $\backslash$ displacement
parallel to $\backslash$ in same direction as
the direction wave travels
OR
(oscillations) parallel to direction of wave travel
the one mark answer with:
mention of compressions and rarefactions
OR
(longitudinal waves) cannot be polarised
gets two marks
$\checkmark$
Allow
Vibration
Allow direction of energy transfer I wave propagation
(c) $\quad\left(f=1540 / 0.50 \times 10^{-3}\right)$
$=3100000(\mathrm{~Hz}) \checkmark(3080000)$
2sf
(d) no more than two points from either list (max 3):

## Description

- mention of nodes and antinodes
- particles not moving at a node
- maximum displacement at antinode
- particles either side of node in antiphase / between two nodes in phase
- variation of amplitude between nodes


## Explanation

- a stationary wave (forms)
- two waves are of equal frequency or wavelength (and amplitude in the same
medium)
- reflected and transmitted waves \waves travelling in opposite directions,
pass
through each other
- superpose / interference occurs
- constructive interference at antinodes
- destructive interference at nodes


Allow 'standing wave'

M6.(a) (i) $\quad \pi / 2$ (radians) or 90 (degrees)
No path differences Penalise contradictions No fractions of a cycle
(ii) $3 \pi / 2$ (rad) or 270 (degrees)

No path differences Penalise contradictions No fractions of a cycle
(c) (the wave is) transverse $\mathbf{O R}$ not longitudinal
accept it is an $S$ wave or secondary wave
only transverse can be polarised OR longitudinal waves cannot be polarised OR oscillations are in one plane
(d) (i) number of waves / complete cycles / wavelengths (passing a point / produced) per second
or 'unit time'
allow: (number of) oscillations / vibrations / cycles per second
allow $f=1$ / $T$ only if $T$ is correctly defined
do not allow references to $f=c / \lambda$
(b) (oscillation or motion) perpendicular to direction of wave (travel / velocity / energy transfer)
(oscillates from equilibrium to maximum positive displacement, back to equilibrium, then to max negative displacement) and back to equilibrium / starting position / rest position
do not allow 'up and down' for first mark
allow 'up and down', or 'down then up', 'side to side', 'rise and fall' in place of oscillates
Allow 'rest position', 'starting position', $\square$ middle', 'centre line' ref to nodes / antinodes not allowed for $2^{\text {nd }}$ mark
(ii) $\quad(v=f / \lambda \lambda=v / f=) 4.5 \times 10^{3} / 6.0$
$=750(\mathrm{~m}) \checkmark$
correct answer only gets 2 marks
Page 5

M7. (a) (i) oscillates / vibrates
(allow goes up and down / side to side / etc, repeatedly, continuously, etc) about equilibrium position / perpendicularly to central line
(ii) X and Y : antiphase / 180 (degrees out of phase) $/ \pi$ (radians out of phase) $\checkmark$ $X$ and $Z$ : in phase / zero (degrees) / $2 \pi$ (radians)

2
(b) (i) $v=f \lambda$
$=780 \times 0.32 / 2$ or $780 \times 0.16$ OR $780 \times 320 / 2$ or $780 \times 160$
THIS IS AN INDEPENDENT MARK
$=124.8 \checkmark\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ correct 4 sig fig answer must be seen
(ii) $1 / 4$ cycle $\checkmark$
$T=1 / 780 O R=1.28 \times 10^{-3} \checkmark$
$0.25 \times 1.28 \times 10^{-3}$
$=3.2 \times 10^{-4}(\mathrm{~s}) \checkmark$
Allow correct alternative approach using distance of 0.04 m travelled by progressive wave in $1 / 4$ cycle divided by speed.
$0.04 / 125 \checkmark=3.2 \times 10^{-4}(\mathrm{~s}) \checkmark$
(c) (i) antinode $\checkmark$
(ii) $2 \times 0.240$
$=0.48 \mathrm{~m} \checkmark$ ' 480 m ' gets 1 mark out of 2
(iii) $\quad(f=v / \lambda=124.8$ or $125 / 0.48)=\mathbf{2 6 0}(\mathrm{Hz})$ ecf from cii $\checkmark$

M8. (a) (wave) B
(the parts of the) spring oscillate / move back and forth in direction of / parallel to wave travel
OR
mention of compressions and rarefactions
Second mark can only be scored if first mark is scored
(b) (i) (double ended arrow / line / brackets) from between two points in phase $\underset{1}{ }$
(ii) wave A: arrow vertically upwards $\checkmark$
wave $B$ : arrow horizontally to the left
(c) (transmitted radio waves are often) polarised aerial (rods) must be aligned in the same plane (of polarisation / electric field) of the wave

